VOCABULARY
Average Precision
Average Precision (AP) is a metric commonly used in the context of binary classification and information retrieval to summarize the Precision-Recall curve. It provides a single number that characterizes the quality of the ranked retrieval results for a given class or category, especially in tasks like object detection.
How Average Precision Works
1. Computing AP:
- Average Precision computes the weighted mean of precisions at each threshold:
- $$AP = \Sigma(Recall_{n}-Recall_{n-1})*Precision_{n}$$
- Where $n$ denotes a specific data point on the Precision-Recall curve.
2. Interpretation:
- AP values range between 0 and 1, where a value of 1 means the model's predictions are perfect (though this is rare in practice).
- AP considers both recall and precision in its computation, so it offers a balance between these two metrics.
Learn how to protect against the most common LLM vulnerabilities
Download this guide to delve into the most common LLM security risks and ways to mitigate them.
Related terms
Activate
untouchable mode.
untouchable mode.
Get started for free.
Lakera Guard protects your LLM applications from cybersecurity risks with a single line of code. Get started in minutes. Become stronger every day.
Join our Slack Community.
Several people are typing about AI/ML security. 
Come join us and 1000+ others in a chat that’s thoroughly SFW.