
Why testing should be at the core of machine learning development.
AI (artificial intelligence) is capable of helping the world scale solutions to our biggest challenges but if you haven’t experienced or heard about AI’s mishaps then you’ve been living under a rock. Coded bias, unreliable hospital systems and dangerous robots have littered headlines over the past few years.

Lakera Team
November 13, 2024

3 Strategies for Making Your ML Testing Mission-Critical Now
Testing machine learning systems is currently more of an art form than a standardized engineering practice. This is particularly problematic for machine learning in mission-critical contexts. This article summarizes three steps from our ML testing series that any development team can take when testing their ML systems.

Lakera Team
March 11, 2025

Fuzz Testing for Machine Learning: How to Do It Right
In this instance of our ML testing series, we discuss fuzz testing. We discuss what it is, how it works, and how it can be used to stress test machine learning systems to gain confidence before going to production.

Lakera Team
March 27, 2025

Test machine learning the right way: Metamorphic relations.
As part of our series on machine learning testing, we are looking at metamorphic relations. We’ll discuss what they are, how they are used in traditional software testing, what role they play in ML more broadly and lastly, how to use them to write great tests for your machine learning application.

Lakera Team
November 13, 2024

Regression Testing for Machine Learning: How to Do It Right
In this blog series, we’ll investigate how we can better test machine learning applications. In the first post, we’ll look at what we mean by ML testing, what an ML bug is, and where they occur, as well as introduce the first technique for your ML testing repertoire: regression testing.

Lakera Team
March 27, 2025

Free of bias? We need to change how we build ML systems.
The topic of bias in ML systems has received significant attention recently. And rightly so. The core input to ML systems is data. And data is biased due to a variety of factors. Building a system free of bias is challenging. And in fact, the ML community has long struggled to define what a bias-free or fair system is.

Lakera Team
November 13, 2024

Activate
untouchable mode.
untouchable mode.
Get started for free.
Lakera Guard protects your LLM applications from cybersecurity risks with a single line of code. Get started in minutes. Become stronger every day.
Join our Slack Community.
Several people are typing about AI/ML security. 
Come join us and 1000+ others in a chat that’s thoroughly SFW.